EconPapers    
Economics at your fingertips  
 

High performance FeTi – 3.1 mass % V alloy for on board hydrogen storage solution

Sanjay Kumar, G.P. Tiwari, Sagar Sonak, Uttam Jain and Nagaiyar Krishnamurthy

Energy, 2014, vol. 75, issue C, 520-524

Abstract: Single phase FeTi intermetallic and FeTi-3.1 mass % V alloy were synthesized by vacuum arc melting using high purity elemental constituents. The crystal structure of both, FeTi intermetallic and FeTi-3.1 mass % V alloy was found to be of CsCl-type. Under similar annealing conditions, crystallite size of FeTi-3.1 mass % V alloy was markedly smaller than that of FeTi intermetallic. Hydrogen absorption in FeTi intermetallic and FeTi-3.1 mass % V alloy was studied in a thermobalance attached to a Sieverts apparatus at a temperature of 327 K under 0.2 MPa hydrogen pressure. The hydrogen absorption in vanadium alloyed FeTi matrix was significantly faster than in the pure intermetallic. The maximum amount of hydrogen absorbed in the FeTi intermetallic and FeTi-3.1 mass % V alloy was of 1.2 and 1.1 mass % respectively.

Keywords: FeTi; Vanadium alloying; Grain refinement; Hydriding kinetics (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214009475
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:75:y:2014:i:c:p:520-524

DOI: 10.1016/j.energy.2014.08.011

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:75:y:2014:i:c:p:520-524