Liquid antimony anode direct carbon fuel cell fueled with mass-produced de-ash coal
Hongjian Wang,
Tianyu Cao,
Yixiang Shi,
Ningsheng Cai and
Wei Yuan
Energy, 2014, vol. 75, issue C, 555-559
Abstract:
A liquid antimony (Sb) anode DCFC (direct carbon fuel cell) is fabricated on a smooth single crystal YSZ (Yttria Stabilized Zirconia) electrolyte substrate with porous Pt cathode to reveal the intrinsic reaction kinetics of electrochemical oxidation of liquid Sb and the reduction reaction characteristics of Sb2O3 with the reaction mass-produced Taixi de-ash coal fuel. The reduction kinetics of Sb2O3 with the de-ash coal is obtained using a temperature programmed reaction testing system. The reaction kinetics of the Sb2O3 with the de-ash coal can be enhanced by decreasing the coal particle size, and by adding de-ash coal into the anode chamber. The Sb2O3 accumulation at the interface between anode and electrolyte lead to the increase of ohmic resistance. While effective reaction active sites increase when the mole content of oxygen ion conductor Sb2O3 increase at the earlier stage of the cell discharging processes which further decrease the electrode polarization. The Si and Fe in the ash possibly accumulate at the interface between anode and electrolyte.
Keywords: Direct carbon fuel cell; Liquid Sb anode; Mass-produced de-ash coal; Performance characteristics (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214009530
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:75:y:2014:i:c:p:555-559
DOI: 10.1016/j.energy.2014.08.017
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().