A study of CO2 precipitation method considering an ionic CO2 and Ca(OH)2 slurry
Sangwon Park,
Hoyong Jo,
Dongwoo Kang and
Jinwon Park
Energy, 2014, vol. 75, issue C, 624-629
Abstract:
CCS (carbon capture and storage) is the most popular technology used for the reduction of CO2 in the post-combustion stage. However, the CCS process has some disadvantages including uncertainty about the stability of the land that is used to store the separated CO2. Consequently, CCU (carbon capture and utilization) technologies have recently received increased attention as a possible replacement for CCS. In this study, we utilized CO2 fixation methods by using the metal carbonate mechanism. We selected 5 and 30 wt% MEA (mono-ethanolamine) solutions to rapidly make a carbonate and Ca(OH)2 slurry. In all of the experiments, normal temperature and pressure conditions were maintained (except during desorption to check for residual CO2 in the MEA solution). Consequently, most of the CO2 was converted to carbonate. The MEA converted CO2 to ionic CO2 and rapidly created calcium carbonate. Also the formed solids that were observed were determined to be CaCO3 and Ca(OH)2 by X-ray diffractometry. Also, the MEA solution could be reused to absorb CO2. Therefore, we have confirmed the development of our suggested CCS process. This process has the ability not only to reuse emitted CO2, but it can also be employed to reuse construction wastes that include heavy metals.
Keywords: CCS (carbon capture and storage) process; CO2 mineralization; PCC (precipitate calcium carbonate) (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214009724
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:75:y:2014:i:c:p:624-629
DOI: 10.1016/j.energy.2014.08.036
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().