EconPapers    
Economics at your fingertips  
 

Heat transfer evaluation of an enhanced heat transfer tube bundle

David J. Kukulka and Rick Smith

Energy, 2014, vol. 75, issue C, 97-103

Abstract: Demands to increase performance of modern heat exchange systems are constantly being made. Typical requirements include the removal of larger amounts of energy or the development of process units that occupy a smaller unit footprint. Vipertex™ 1EHT enhanced surfaces have been designed and produced through material surface modifications in order to create flow optimized heat transfer tubes which increase heat transfer with only a modest increase in the friction factor. Considerations in the development of the enhanced, three dimensional 1EHT enhanced heat transfer surfaces include: maximization of heat transfer; minimization of operating costs; and/or a minimization of the rate of surface fouling. This study details the performance of a horizontal oriented 1EHT enhanced surface tube bundle and compares heat transfer results to a horizontal bundle of smooth tubes for single phase and two phase conditions. Results for the 1EHT bundle show an increase in the overall heat transfer coefficient up to 200% when compared to the heat transfer performance of a smooth tube bundle using typical fluids (n-Pentane, p-Xylene and water); for midpoint shellside Reynolds number values in the range of 2010–20,400; with effective mean temperature difference (EMTD) values between 8.6 °C and 65.7 °C. More nucleation sites are produced on the 1EHT tube surface than on an equivalent length of unenhanced commercial tube. Results from this bundle study indicate that the 1EHT enhanced tube surface is well suited for applications where nucleate boiling is significant. Enhanced heat transfer tube bundles using the 1EHT tubes are capable of producing efficiency increases making 1EHT tubes an important alternative to be considered in the design of high efficiency processes. Vipertex 1EHT tube bundles recover more energy and provide an opportunity to advance the design of many heat transfer products.

Keywords: Enhanced heat transfer surfaces; Enhanced tubes; Bundle boiling; Heat transfer; Bundle heat transfer (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214005453
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:75:y:2014:i:c:p:97-103

DOI: 10.1016/j.energy.2014.04.113

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:75:y:2014:i:c:p:97-103