EconPapers    
Economics at your fingertips  
 

Feasibility assessment for high penetration of distributed photovoltaics based on net demand planning

Brian Azzopardi and Alejandro Gabriel-Buenaventura

Energy, 2014, vol. 76, issue C, 233-240

Abstract: Well integrated distributed photovoltaics (PVs) will help tomorrow's energy system become more sustainable. This paper highlights the net demand planning feasibility assessment to understand these dynamics. These dynamics underpins the technical feasibility when setting up high penetration of PVs within a new development area. Real measurements of disaggregated domestic electricity demand from three low-carbon homes and simulated PV output are used. A case study is based on a new building development in North West Bicester Eco Town, Oxfordshire, consisting of 393 homes, community and commercial units. Using simulation models and real domestic load measurements, the results show potential for demand management and energy storage. With a sensitivity analysis, the paper discusses also related energy policy aspects such as options for PV orientation aspects, the use of Electric Vehicles (EVs), the potential of Direct Current electrical installations and schemes that encourage load shifting. The paper concludes, within the context of the case study, assumptions and scenarios that, contrary to what is commonly believed, high penetration of PVs in a development area is feasible and may even reduce grid infrastructure costs.

Keywords: Photovoltaic; Storage; Energy; Demand; Load; Management (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214007518
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:76:y:2014:i:c:p:233-240

DOI: 10.1016/j.energy.2014.06.052

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:76:y:2014:i:c:p:233-240