Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis
Jae-Young Kim,
Shinyoung Oh,
Hyewon Hwang,
Youn-Ho Moon and
Joon Weon Choi
Energy, 2014, vol. 76, issue C, 284-291
Abstract:
Liquid bio-oils were produced from miscanthus (Miscanthus sacchariflorus) by fast pyrolysis at various temperature ranges (350–500 °C) with a short residence time and their physicochemical properties were determined to evaluate the potentials for biofuel utilization. Before operating fast pyrolysis, miscanthus was subjected to ICP-ES (inductively coupled plasma emission spectrometer) analysis and TGA (thermogravimetric analysis). It was learned that miscanthus was thermally unstable due to large amounts of inorganic constituents including potassium (5643.8 ppm), calcium (711.0 ppm) and magnesium (1403.1 ppm). With fast pyrolysis, the yield of bio-oil gradually decreased with increasing temperature and residence time. The maximum yield of bio-oil was ca. 58.9 wt% at 350 °C with a residence time of 1.9 s. The HHV (higher heating value) of bio-oil was determined up to 18.0 MJ/kg produced at 400 °C with a residence time of 1.9 s. The water content of bio-oil was ranged from 21.1 to 56.9 wt%. GC/MS (gas chromatography/mass spectrometry) analysis showed that bio-oil was mostly composed of carbohydrate derivatives and lignin derivatives. 1-(Acetyloxy)-2-butanone, furfural, dihydro-methy-furanone and levoglucosan were the predominant low molecular weight compounds that originated from carbohydrate and those from lignin were guaiacol 4-vinylphenol and syringol.
Keywords: Miscanthus sacchariflorus; Fast pyrolysis; Bio-oil; Inorganic constituent; Thermo-gravimetric analysis; GC/MS (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214009463
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:76:y:2014:i:c:p:284-291
DOI: 10.1016/j.energy.2014.08.010
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).