Marginal abatement cost curves and abatement strategies: Taking option interdependency and investments unrelated to climate change into account
F. Levihn,
C. Nuur and
S. Laestadius
Energy, 2014, vol. 76, issue C, 336-344
Abstract:
Firms usually have optimization tools for evaluating various investment options; policymakers likewise need tools for designing economically efficient policies. One such tool is the MACC (marginal abatement cost curve), used to capture the least-cost sequence of abatement options. Such curves are also used for understanding the implications of government policies for markets and firms. This article explores dynamic path-dependent aspects of the Stockholm district heating system case, in which the performance of some discrete options is conditioned by others. In addition, it proposes adding a feedback loop to handle option redundancy when implementing a sequence of options. Furthermore, in an energy system, actions unrelated to climate change abatement might likewise affect the performance of abatement options. This is discussed together with implications for climate change policy and corporate investment optimization. Our results indicate that a systems approach coupled with a feedback loop could help overcome some of the present methodological limitations.
Keywords: MACC; CO2 abatement; Investment optimization (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421400961X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:76:y:2014:i:c:p:336-344
DOI: 10.1016/j.energy.2014.08.025
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().