Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid
Sangwoo Shin,
Geehong Choi,
Beom Seok Kim and
Hyung Hee Cho
Energy, 2014, vol. 76, issue C, 428-435
Abstract:
Owing to the recent advances in nanotechnology, one significant progress in energy technology is increased cooling ability. It has recently been shown that nanowires can improve pool boiling heat transfer due to the unique features such as enhanced wetting and enlarged nucleation sites. Applying such nanowires on a flow boiling, which is another major class of boiling phenomenon that is associated with forced convection, is yet immature and scarce despite its importance in various applications such as liquid cooling of energy, electronics and refrigeration systems. Here, we investigate flow boiling heat transfer on surfaces that are coated with SiNWs (silicon nanowires). Also, we use highly-wetting dielectric liquid, FC-72, as a working fluid. An interesting wetting behavior is observed where the presence of SiNWs reduces wetting and wicking that in turn leads to significant decrease of CHF (critical heat flux) compared to the plain surface, which opposes the current consensus. Also, the effects of nanowire length and Reynolds number on the boiling heat transfer are shown to be highly nonmonotonic. We attempt to explain such an unusual behavior on the basis of wetting, nucleation and forced convection, and we show that such factors are highly coupled in a way that lead to unusual behavior.
Keywords: Boiling heat transfer; Forced convection; Nanowire; Wetting; Bubble nucleation (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214009736
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:76:y:2014:i:c:p:428-435
DOI: 10.1016/j.energy.2014.08.037
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().