A study of using a thermoelectric generator to harvest energy from a table lamp
Chien-Chou Weng and
Mei-Jiau Huang
Energy, 2014, vol. 76, issue C, 788-798
Abstract:
The application of a TEG (thermoelectric power generator) to harvest energy from the waste heat of a commercial table lamp was investigated experimentally as well as numerically. The table lamp was integrated with TEG chips which were cooled by a natural convection heat sink. In the simulation, the heat sink was not truly simulated but modeled by the compact heat sink model. The effective thermal conductivity of the fiction fluid in the compact model was calibrated by matching the calculated and measured temperatures. A 1D TEG model taking the Peltier and Joule heats into consideration was then proposed to predict the power generation rate based on the simulated hot side and cold side thermal conductances of the open-circuit system. The prediction is in a good agreement with the closed-circuit simulation results but has a slightly larger maximum power generation rate and a slightly smaller optimal electric load than the experimental measurements. It was attributed to the effect of the remaining electric resistances in the circuit other than the internal resistance of the TEG chips and external load. Finally, it was found that the low hot-side thermal conductance is the main reason for the low power generation efficiency.
Keywords: Lamp; Waste heat recovery; Thermoelectric generator; Compact heat sink model (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214010329
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:76:y:2014:i:c:p:788-798
DOI: 10.1016/j.energy.2014.08.078
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().