Stated preferences based estimation of power interruption costs in private households: An example from Germany
Aaron Praktiknjo
Energy, 2014, vol. 76, issue C, 82-90
Abstract:
Concerns regarding supply security are increasingly raised in reaction to the transition of the German energy system toward a renewable and nuclear-free system called “Energiewende”. The goal of this work is to contribute to a measurability of supply security by quantifying the consequences of power interruptions monetarily. The focus lies within the investigation of power interruption costs in private households. An online survey with 859 participants in 2011 is used to gather the necessary data. Based on this data, a two-staged bottom-up regression model was estimated to describe interruption costs for durations of 15 min, 1 h, 4 h, 1 day and 4 days. Finally, micro-data from 55,000 households were used to perform Monte Carlo simulations to increase the representativeness of the estimations. The frequency distributions of the estimated interruption costs indicate potentials for load-shedding measures. Such measures could be an economically viable contribution to a successful integration of large shares of renewable fluctuating generation like wind or solar power.
Keywords: Power interruption costs; Value of lost load; Stated preferences; Households; Supply security; Renewables (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214003533
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:76:y:2014:i:c:p:82-90
DOI: 10.1016/j.energy.2014.03.089
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().