EconPapers    
Economics at your fingertips  
 

The effect of hemicelluloses and lignin on acid hydrolysis of cellulose

S.-Y. Yoon, S.-H. Han and S.-J. Shin

Energy, 2014, vol. 77, issue C, 19-24

Abstract: In acid hydrolysis of plant biomass, polysaccharides are converted to monosaccharides, which is basic raw material for biorefinery for fermentation based process. These monosaccharides, however, are not stable in acidic reaction medium, and are converted to organic acids via furans. Impact of hemicelluloses and lignin on acid hydrolysis of cellulose was investigated to focus on monosaccharide production with different degrees of cellulose purity. Two-step concentrated sulphuric acid process was applied to biomass for monosaccharide conversion. Kinetics of cellulose hydrolysis was analysed using 1H NMR spectroscopy. Higher reaction temperature in secondary hydrolysis caused severe degradation of the monosaccharides. In pure and holocellulose, further reaction of glucose in acidic reaction medium produced formic acid and levulinic acid. However, lignocellulosic biomass generated much less formic acid and levulinic acid under the same reaction condition. Humin (or pseudo-lignin) was also formed by the condensation of lignin and furans from monosaccharides in acidic reaction condition. Thus, the fermentation inhibitors, furans and formic acid, were generated in low quantities by lignocellulosic biomass than by delignified biomass such as pure cellulose or holocellulose.

Keywords: Acid hydrolysis; Cellulose; Xylan; Lignin; Formic acid; 1H NMR (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214001261
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:77:y:2014:i:c:p:19-24

DOI: 10.1016/j.energy.2014.01.104

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:77:y:2014:i:c:p:19-24