EconPapers    
Economics at your fingertips  
 

The effects of filter porosity and flow conditions on soot deposition/oxidation and pressure drop in particulate filters

Seungmok Choi, Kwang-Chul Oh and Chun-Bum Lee

Energy, 2014, vol. 77, issue C, 327-337

Abstract: Particulate filters are widely used in the automotive industry to reduce PM (particulate matter) produced by internal combustion engines. Wall-flow particulate filters trap PM while exhaust gas passes through the porous walls of the filter, with the pore microstructure of the porous walls affecting soot deposition, oxidation, and pressure drops during filtration and regeneration. In this study, soot deposition/oxidation behaviors were visualized in relation to the pressure drop, and the pressure drop characteristics of two particulate filters having different porosity were compared based on the results of the visualizations. It was found that the oxidation rate of the soot cake on channel walls is slower than that of the soot in the pores, due to limited oxidizer diffusion into the soot cake, which causes three-stage regeneration under the controlled regeneration regime. The high-porosity filter offered a lower pressure drop at the same amount of soot loading, faster pressure drop recovery, and higher regeneration efficiency during controlled regeneration.

Keywords: Particulate filter; Pressure drop; Filtration; Controlled regeneration; Filter porosity (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214009852
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:77:y:2014:i:c:p:327-337

DOI: 10.1016/j.energy.2014.08.049

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:77:y:2014:i:c:p:327-337