EconPapers    
Economics at your fingertips  
 

Development of new heat exchanger network designs for a four-step Cu–Cl cycle for hydrogen production

Ahmet Ozbilen, Ibrahim Dincer and Marc A. Rosen

Energy, 2014, vol. 77, issue C, 338-351

Abstract: The Aspen Plus process simulation package is used to evaluate the characteristics of the four-step Cu–Cl thermochemical water splitting cycle in terms of energy and exergy, to support the ultimate development of a pilot plant. Alternative designs for the heat exchanger network using Aspen Energy Analyzer are developed and studied for thermal management within the Cu–Cl cycle. The simulation results for the four-step Cu–Cl cycle illustrate that the steam-to-copper molar ratio can be reduced to 10 from an initial value of 16 by decreasing the pressure of the hydrolysis reactor. A thermodynamic model of the four-step Cu–Cl cycle is developed to determine its energy and exergy efficiencies. The energy and exergy efficiencies of the four-step Cu–Cl cycle are determined to be 55.4% and 66.0%, respectively.

Keywords: Copper-chlorine cycle; Hydrogen production; Aspen Plus; Heat exchanger network; Thermal management; Exergy (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214009876
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:77:y:2014:i:c:p:338-351

DOI: 10.1016/j.energy.2014.08.051

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:77:y:2014:i:c:p:338-351