Thermal energy generation and distribution in friction stir welding of aluminum alloys
H. Su,
C.S. Wu,
A. Pittner and
M. Rethmeier
Energy, 2014, vol. 77, issue C, 720-731
Abstract:
The accurate prediction of the thermal energy generation and distribution in friction stir welding process is of great significance for the optimization of the process parameters and the understanding of the underlying mechanisms. In this study, a new method of integrative calculation and measurement is proposed to obtain the more reasonable values of the frictional coefficient and the slip rate, which are both used to characterize the heat generation rate at the tool-workpiece contact interfaces. A three-dimensional model is established to fully couple the energy generation, heat transfer and material flow in friction stir welding of aluminum alloys. The energy produced by both interfacial friction and plastic deformation are taken into consideration. The analysis accuracy of the thermal energy generation and distribution is improved, and the distribution features of thermal energy density in the vicinity of the tool are elucidated. The predicted peak temperature values at some locations are in agreement with the experimentally measured ones.
Keywords: Thermal energy generation; Energy density distribution; Heat transfer; Material flow; Friction stir welding (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214011013
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:77:y:2014:i:c:p:720-731
DOI: 10.1016/j.energy.2014.09.045
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().