EconPapers    
Economics at your fingertips  
 

Aerodynamics performance of continuously variable speed horizontal axis wind turbine with optimal blades

Ahmad Sedaghat, M. El Haj Assad and Mohamed Gaith

Energy, 2014, vol. 77, issue C, 752-759

Abstract: For conventional HAWT (horizontal axis wind turbines), the rotor speed is maintained constant while the blade tip speed changes continuously. This reduces considerably the power performance of the wind turbine particularly at high wind speeds where the tip speed ratio is small. With growth of variable speed generators, a compact BEM (blade element momentum) analysis is derived to design optimal blades for continuously variable speed HAWTs. First, a generalized quadratic equation on the angular induction factor is introduced which is related to local axial induction factor, blade local speed ratio, and drag to lift ratio. Second, the optimal blade geometry is obtained for which the maximum power coefficient is calculated at different design tip speed ratios and drag to lift ratios by assuming variable operational speed. Third, it is demonstrated that the power performance of the variable speed wind turbine is significantly higher than the conventional constant speed wind turbines. In addition, the present BEM modeling may be useful to reduce the computational effort of iterative numerical methods used in determining off-design power performance of conventional wind turbines with constant speed.

Keywords: Aerodynamics; HAWT (horizontal axis wind turbines); Compact solutions; Blade element; Method of moment; Wind power generation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214011049
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:77:y:2014:i:c:p:752-759

DOI: 10.1016/j.energy.2014.09.048

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:77:y:2014:i:c:p:752-759