The size of sorbents in low pressure sorption or thermochemical energy storage processes
Kokouvi Edem N'Tsoukpoe,
Giovanni Restuccia,
Thomas Schmidt and
Xavier Py
Energy, 2014, vol. 77, issue C, 983-998
Abstract:
Sorption and thermochemical heat storage attracted considerable attention recently because it offers various opportunities in the design of renewable and sustainable energy systems. Heat and mass transfer remains currently the main limitations whose overcoming would facilitate their introduction to the market, a step which has been pointed out as long overdue. In this paper, main aspects regarding the heat and mass transfer in solid sorption heat transformers, seen purely from the perspective of the size of particles and the thickness of sorbent layers, are reviewed for both open and closed units. Because mass and heat transfer challenges are common problematic in adsorption, chemical heat pumps and chillers as well as in thermochemical energy storage, relevant data from related literatures will be considered. This work has been limited to pulverised or pelletised beds. One trend is towards the use of relatively small grain size adsorbents in physical closed adsorption heat transformers. The authors expect to provide valuable starting points for designers of sorption or thermochemical energy storage units.
Keywords: Adsorption; Particle size; Packed bed; Heat transfer; Mass transfer; Thermochemical energy storage (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214011621
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:77:y:2014:i:c:p:983-998
DOI: 10.1016/j.energy.2014.10.013
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().