EconPapers    
Economics at your fingertips  
 

Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry

Shaohui Zhang, Ernst Worrell, Wina Crijns-Graus, Fabian Wagner and Janusz Cofala

Energy, 2014, vol. 78, issue C, 333-345

Abstract: In 2010, China was responsible for 45% of global steel production, while consuming 15.8 EJ of final energy and emitting 1344 Mt CO2eq, 8.4 Mt of PM (particulate matter) emissions, and 5.3 Mt of SO2 emissions. In this paper we analyse the co-benefits of implementing energy efficiency measures that jointly reduce greenhouse gas emissions and air pollutants, in comparison to applying only air pollution control (end-of-pipe technology). For this purpose we construct ECSC (energy conservation supply curves) that contain potentials and costs of energy efficiency measures and implement these in the GAINS (greenhouse gas and air pollution interactions and synergies) model. Findings show that the technical energy saving potential for the Chinese iron and steel industry for 2030 is around 5.7 EJ. This is equivalent to 28% of reference energy use in 2030. The emissions mitigation of GHGs (greenhouse gases) and air pollutants in BAEEM_S3 scenario would be reduce 27% CO2eq, 3% of PM, and 22% of SO2, compared to the BL scenario in 2030. Investments and cost savings were calculated for different scenarios, showing that energy efficiency investments will result in significant reductions in air pollution control costs. Hence, Energy efficiency measures should be integrated in air quality policy in China.

Keywords: Co-benefits; Energy efficiency; Iron and steel industry; GHGs (greenhouse gases); Air pollutants; Investment (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (56)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214011670
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:78:y:2014:i:c:p:333-345

DOI: 10.1016/j.energy.2014.10.018

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:333-345