EconPapers    
Economics at your fingertips  
 

Impregnation of olive mill wastewater on dry biomasses: Impact on chemical properties and combustion performances

Nesrine Kraiem, Mejdi Jeguirim, Lionel Limousy, Marzouk Lajili, Sophie Dorge, Laure Michelin and Rachid Said

Energy, 2014, vol. 78, issue C, 479-489

Abstract: Mediterranean countries generate large amounts of olive oil byproducts mainly OMWW (olive mill wastewater) and EOSW (exhausted olive solid waste). Although solid residues have various valorization strategies, there is no economically viable solution for the OMWW disposal. This study aims to recover the OMWW organic contents through solid biofuels production. Hence sawdust and EOSW were used for the OMWW impregnation. The potential of the obtained samples, namely: IS (impregnated sawdust) and IEOSW (impregnated exhausted olive solid waste) were evaluated. Therefore, the physicochemical characterizations and thermogravimetric analyses of the samples were first performed. Secondly, the samples densification into pellets and their combustion in a domestic combustor were carried out. Combustion efficiencies, gaseous and PM (particulate matter) emissions as well as ash contents were evaluated.

Keywords: Olive mill wastewater; Impregnation; Characterization; Energy recovery; Combustion tests; Gaseous and particulate emissions (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214011840
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:78:y:2014:i:c:p:479-489

DOI: 10.1016/j.energy.2014.10.035

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:479-489