EconPapers    
Economics at your fingertips  
 

CO2 hydrate formation at atmospheric pressure using high efficiency absorbent and surfactants

Jae Woo Choi, Jin Tack Chung and Yong Tae Kang

Energy, 2014, vol. 78, issue C, 869-876

Abstract: CO2 hydrate slurry can be used in a lot of practical applications such as CO2 capture, CO2 storage-transportation and CO2 sequestration processes. However, CO2 hydrate slurry is generally formed at low temperature and high pressure. The objectives of this study are to develop new absorbents to form CO2 hydrate at atmospheric pressure, and to evaluate the effects of surfactants and additives on the formation rate and the induction time of CO2 hydrate. THF (Tetrahydrofuran) is used as a surfactant and SDS (Sodium dodecyl sulfate) and nano particles such as Al2O3 are used as the additives. It is found that the maximum CO2 hydrate formation rate is enhanced up to 3.74 times by adding 0.6 wt% of SDS and 0.2 wt% of Al2O3 nanoparticles compared to the formation rate without the surfactants. Finally, it is concluded that THF 10 wt% and SDS 0.6 wt% with Al2O3 0.2 wt% is the optimum condition for CO2 hydrate formation rate enhancement.

Keywords: CO2 hydrate; Formation rate; Induction time; Surfactants (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214012316
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:78:y:2014:i:c:p:869-876

DOI: 10.1016/j.energy.2014.10.081

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:869-876