EconPapers    
Economics at your fingertips  
 

Experimental study on the effective thermal conductivity of hydrate-bearing sediments

Lei Yang, Jiafei Zhao, Weiguo Liu, Mingjun Yang and Yongchen Song

Energy, 2015, vol. 79, issue C, 203-211

Abstract: Gas hydrates are considered as a potential strategic energy source for sustainable development. The thermal properties of hydrate-bearing sediments govern the hydrate dissociation behavior and gas production process that accompany phase transformation and multiphase flow. This paper presents a thermistor-based measuring method to obtain the effective thermal conductivity of tetrahydrofuran hydrate-bearing sediments. The effects of different porosities, hydrate saturations and porous materials on the effective thermal conductivity were investigated. The porosity and the hydrate saturation were obtained using an X-ray CT (computed tomography) apparatus. The findings indicated that the effective thermal conductivity of hydrate-bearing sediments increased from 0.6468 W/(m K) to 0.7318 W/(m K) with porosity decreasing from 42.5% to 37.2%. Increasing hydrate saturations from 0% to 100% decreased the effective thermal conductivity from 0.7876 W/(m K) to 0.7318 W/(m K). Additionally, existing effective medium correlations were examined using the experimental data. The results showed that none of the existing correlations can suitably predict the measured data. Therefore, a hybrid correlation was proposed by optimizing the weighting parameters of the Parallel correlation and the Series correlation using the PIKAIA genetic algorithm. The agreement of the fitting correlation with the experiments is given, and the effective prediction of other researchers' work confirms the feasibility of our correlation.

Keywords: Hydrate; Effective thermal conductivity; Prediction correlation; Genetic algorithm; X-ray CT (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214012626
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:79:y:2015:i:c:p:203-211

DOI: 10.1016/j.energy.2014.11.008

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:79:y:2015:i:c:p:203-211