EconPapers    
Economics at your fingertips  
 

Analytical wake model of tidal current turbine

Wei-Haur Lam, Long Chen and Roslan Hashim

Energy, 2015, vol. 79, issue C, 512-521

Abstract: Prediction of the wake structure is important to understand the lee flow of a tidal current turbine. The proposed analytical wake model consists of several equations derived from the theoretical works of a ship propeller jet. Axial momentum theory was used to predict the minimum velocity at the immediate plane of the lee wake and followed by the proposed recovery equation to determine the minimum velocity at various lateral sections along the rotation axis. Gaussian probability distribution was used to predict the velocity distribution of lateral sections in a wake. Entire wake is able to be illustrated through the calculation of the efflux equation, recovery equation and lateral distribution equations. Authors' previous works proposed a simplified one-dipped velocity profile and this works were being extended to predict the two-dipped velocity profile with the consideration of hub effects. The wake model is validated by using the well-accepted experimental measurements and the goodness-of-fit test. The results demonstrated that the wake model is able to predict the wake profile under various ambient turbulence conditions of TI (turbulence intensity) = 3%, 5%, 8% and 15%.

Keywords: Tidal-current turbine; Efflux velocity; Wake (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214013024
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:79:y:2015:i:c:p:512-521

DOI: 10.1016/j.energy.2014.11.047

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:79:y:2015:i:c:p:512-521