Thermoeconomic optimization of gas turbine cogeneration plants
Rabi Karaali and
İlhan Tekin Öztürk
Energy, 2015, vol. 80, issue C, 474-485
Abstract:
In this study, a novel thermoeconomic optimization method that is simple and efficient, for real complex cycles is introduced. First, a thermoeconomic analysis method that is called non-linear simplex direct search method is improved for the purposes of this study. The objective of this paper is to apply this method to four cogeneration cycles that are simple cycle, inlet air cooling cycle, air preheated and air-fuel preheated cycles for analyzing and optimizing. The four cycles are thermoeconomically optimized for constant power and steam mass (30 MW and 14 kg/s saturated steam flow rate at 2000 kPa), for constant power (30 MW) and for variable steam mass, and for variable power and steam mass by using the cost equation method and the effect of size on equipment method. The results obtained by the effect of size on equipment and by the cost equations methods are very different from each other. For the case of global optimization, the optimum electricity costs which also correspond to minimum are obtained as 0,0432 $/kWh for simple cycle, 0,0514 $/kWh for inlet air cooling cycle 0,0577 $/kWh for air preheated cycle and 0,058 $/kWh for air-fuel preheated cycle by using cost equations method.
Keywords: Cogeneration; Thermoeconomic; Optimization; Cost methods (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214013619
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:80:y:2015:i:c:p:474-485
DOI: 10.1016/j.energy.2014.12.004
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().