EconPapers    
Economics at your fingertips  
 

Modeling a complete Stirling engine

Christopher J. Paul and Abraham Engeda

Energy, 2015, vol. 80, issue C, 85-97

Abstract: The assumptions of second order Stirling engine models were reviewed. An ideal adiabatic plus simple heat exchanger model was developed. The model included the external components such as the fan, combustor, and preheater. The external heat transfer to the engine heater was modeled using a log-mean-temperature difference for a constant tube surface temperature. The performance of the model of the external components compared reasonably well to experimental data. The performance of the complete engine model was also compared to experimental data of the GPU-3. By adjusting the flow dissipation to better account for unsteady flow conditions and compressibility effects, the complete engine model was able to predict engine power and brake specific fuel consumption to within ±14% over a wide range of engine speeds and mean pressures. This analysis and others suggest that second order models of Stirling engines need to account for the gradient of the divergence of velocity term in the compressible momentum equation if the mean engine pressure is low enough (less than 3.0 MPa) and the engine speed is high enough (above 30 Hz).

Keywords: Stirling engine; External heat transfer; 2nd order; Compressibility (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214013000
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:80:y:2015:i:c:p:85-97

DOI: 10.1016/j.energy.2014.11.045

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:80:y:2015:i:c:p:85-97