Reverse engineering of fluid selection for thermodynamic cycles with cubic equations of state, using a compression heat pump as example
Dennis Roskosch and
Burak Atakan
Energy, 2015, vol. 81, issue C, 202-212
Abstract:
Fluid selection for thermodynamic cycles like refrigeration cycles, heat pumps or organic Rankine cycles remains an actual topic. Generally the search for a working fluid is based on experimental approaches or on a not very systematic trial and error approach, far from being elegant. An alternative method may be a theory based reverse engineering approach, proposed and investigated here: The design process should start with an optimal process and with (abstract) properties of the fluid needed to fit into this optimal process, best described by some general equation of state and the corresponding fluid-describing parameters. These should be analyzed and optimized with respect to the defined model process, which also has to be optimized simultaneously. From this information real fluids can be selected or even synthesized which have fluid defining properties in the optimum regime like critical temperature or ideal gas capacities of heat, allowing to find new working fluids, not considered so far. The number and kind of the fluid-defining parameters is mainly based on the choice of the used EOS (equation of state). The property model used in the present work is based on the cubic Peng–Robinson equation, chosen due to its moderate numerical expense, sufficient accuracy as well as a general availability of the fluid-defining parameters for many compounds.
Keywords: Fluid selection; Reverse engineering; Heat pump (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214013838
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:81:y:2015:i:c:p:202-212
DOI: 10.1016/j.energy.2014.12.025
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().