EconPapers    
Economics at your fingertips  
 

Magnetostrictive vibration energy harvesting using strain energy method

Saber Mohammadi and Aboozar Esfandiari

Energy, 2015, vol. 81, issue C, 519-525

Abstract: Harvesting energy has experienced a significant development in recent years, due to high demand on the mobile electrical devices and self powered systems. Thus, it is interesting to convert mechanical energy into suitable electrical energy using Magnetostrective materials. In this paper, a class of vibration energy harvester based on MsM (magnetostrictive material) is introduced and developed. The method used is strain energy that is straightforward and simple enough in comparison to others, such as finite element method. To analyze the MSM-based energy harvester, a beam equipped with Metglas 2605SC material wound by a pick-up coil has been considered. In order to power optimization a parametrical study has been performed and the results have been presented. The output power under base excitation can reach 9.4 mW which compete favorably with the piezoelectric vibration energy harvesters.

Keywords: Magnetostrictive; Harvesting energy; Vibration; Strain energy; Magnetic field (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544214014431
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:81:y:2015:i:c:p:519-525

DOI: 10.1016/j.energy.2014.12.065

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:81:y:2015:i:c:p:519-525