Self-scheduling of a wind producer based on Information Gap Decision Theory
M. Moradi-Dalvand,
B. Mohammadi-Ivatloo,
N. Amjady,
H. Zareipour and
A. Mazhab-Jafari
Energy, 2015, vol. 81, issue C, 588-600
Abstract:
In a competitive market where all producers must participate in the market, WPPs (wind power producers) face two sources of uncertainty: (i) future market prices, and (ii) their production capability in coming hours. In this paper a risk-constrained optimal self-scheduling method for a WPP considering the uncertainty associated with market prices and wind generation is proposed. IGDT (Information Gap Decision Theory) is used to address theses uncertainties in WPP's self-scheduling. The proposed IGDT-based model is a bilevel programming approach, which is transformed to an equivalent single level bilinear programming model that can be solved using available solvers. Numerical simulations and discussions are provided.
Keywords: IGDT (Information-Gap Decision Theory); Electricity markets; Self-scheduling; Uncertainty; Wind producer (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215000092
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:81:y:2015:i:c:p:588-600
DOI: 10.1016/j.energy.2015.01.002
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).