EconPapers    
Economics at your fingertips  
 

Simulation of potential standalone liquid desiccant cooling cycles

Rajat Subhra Das and Sanjeev Jain

Energy, 2015, vol. 81, issue C, 652-661

Abstract: LDCS (Liquid desiccant cooling systems), capable of achieving dehumidification and cooling with low-grade heat input, can be effectively used for treating fresh air in hot and humid regions. These can also be operated using non-concentrating solar collectors. The present study is concerned with the evaluation of various potential liquid desiccant cycles for tropical climatic conditions. Six potential standalone liquid desiccant cycles are identified and analyzed to select the best configuration for achieving thermal comfort. A computer simulation model is developed in EES (Equation Solver) software platform to evaluate the performance of all the cycles at various operating conditions. Aqueous solution of LiCl (lithium chloride) is used as desiccant. Mass and energy balance equations of all the components along with their effectiveness and LiCl property correlation equations are solved simultaneously for given ambient conditions. As the desiccant circuit is a closed loop, no assumptions are made about its concentration and temperature in the algorithm. Supply air conditions, cooling capacity, COP (capacity and coefficient of performance) and CR (circulation rate) per unit cooling capacity and hot water temperature requirement are used as a measure for analyzing the performance of the different cycles. The effect of hot water temperature on the performance of the cycles is evaluated at ARI conditions. The performances of the cycles are also evaluated for cities selected from each of the climatic zone of India that represent typical tropical climates. Although all the cycles are feasible at ARI and hot and dry conditions, only two cycles can achieve the selected indoor conditions in the peak humid conditions. The results would be useful for selecting suitable liquid desiccant cycle for a given climate.

Keywords: Liquid desiccant; Cycle analysis; Dehumidification; Cooling; Fresh air (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421500016X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:81:y:2015:i:c:p:652-661

DOI: 10.1016/j.energy.2015.01.009

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:81:y:2015:i:c:p:652-661