Benefits of weakening in thermogravimetric signals of hemicellulose and lignin for producing briquettes from soybean crop residue
Sandip Gangil
Energy, 2015, vol. 81, issue C, 729-737
Abstract:
Thermogravimetric signals of hemicellulose and lignin were found to subside due to the binderless briquetting of soybean crop residue. Minor but distinct thermogravimetric signals of secondary charring reactions were observed in raw crop residue and its briquetted biofuel. The bio-component related kinetics was evaluated using the Kissinger method. Activation energy level of intrinsic cellulosic biopolymer was found higher in briquette than that level in crop residue. The activation energy profile with respect to conversion fraction for raw residue and its briquette was analyzed by the Kissinger–Akahira–Sunose method. The activation energy profile of briquette was superior to raw residue of soybean crop showing the better thermal stability in briquetted biofuel, highlighting the benefits of briquetting process. In addition to the physico-chemical transformations occurred in lignin, the hemicellulose and cellulose related transitions were also expected to play positive role for briquetting.
Keywords: Kinetics; Thermogravimetry; Activation energy; Briquetted biofuel; Soybean crop residues (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215000286
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:81:y:2015:i:c:p:729-737
DOI: 10.1016/j.energy.2015.01.018
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().