Demand side management in a smart grid with multiple electricity suppliers
Mohammad Majid Jalali and
Ahad Kazemi
Energy, 2015, vol. 81, issue C, 766-776
Abstract:
In future smart grids, the electricity suppliers can modify the customers' load consumption pattern by implementing appropriate DSM (demand side management) programs using smart meters. Most of the existing studies on DSM, only consider one utility company in the supplier side. In this paper, the possibility of existing more than one supplier in the smart grid is addressed by modeling the DSM problem as two non-cooperative games: the supplier side game, and the customer side game. In the first game, the suppliers' profit maximization problem is formulated by applying supply function bidding mechanism. In the proposed mechanism, the electricity suppliers submit their bids to the DSM center, where the electricity price is computed and is sent to the customers. In the second game, the customers aim to determine optimal load profile to maximize their daily payoff. The existence and uniqueness of the Nash equilibrium in the mentioned games are explored and a computationally tractable distributed algorithm is designed to determine the equilibrium. Simulations are performed for a smart grid system with 3 suppliers and 1000 customers. Simulation results demonstrate the superior performance of the proposed mechanism in reducing the peak load and increasing the suppliers' profit and the customers' payoff.
Keywords: Demand side management; Load scheduling; Smart grid; Non-cooperative game; Nash equilibrium (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215000468
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:81:y:2015:i:c:p:766-776
DOI: 10.1016/j.energy.2015.01.027
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().