Double-effect distillation and thermal integration applied to the ethanol production process
Reynaldo Palacios-Bereche,
Adriano V. Ensinas,
Marcelo Modesto and
Silvia A. Nebra
Energy, 2015, vol. 82, issue C, 512-523
Abstract:
A double-effect distillation system allows a significant reduction in energy consumption, since the condensers and reboilers of different columns can be integrated thermally. To achieve this goal, some columns operate under a vacuum, while others operate close to atmospheric pressure. These pressure levels bring about different temperature levels, allowing energy recovery. Thus, the aim of this study is to assess the incorporation of double-effect distillation in ethanol production, and its impact on energy consumption and electricity surplus production in the cogeneration system. Moreover, because double-effect distillation and thermal integration involve an increase in equipment costs, an economic assessment was done. Several cases were evaluated and a thermal integration technique was applied, in order to integrate the overall process. The thermal integration study showed that it is possible to integrate the juice concentration step (multiple effect evaporation system) in the overall process without additional thermal consumption, through the selection of a suitable set of pressures in the evaporation system. The results showed a reduction in steam consumption of between 17% and 54%, in comparison with the Base Case. Regarding the electricity surplus, this increased by up to 22% when extraction–condensing steam turbines were adopted.
Keywords: Ethanol; Sugarcane; Energy; Double-effect distillation; Thermal integration (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215000869
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:82:y:2015:i:c:p:512-523
DOI: 10.1016/j.energy.2015.01.062
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().