Air-cooled gas turbine cycles – Part 1: An analytical method for the preliminary assessment of blade cooling flow rates
Enrico Sciubba
Energy, 2015, vol. 83, issue C, 104-114
Abstract:
It is well known that, for a given compressor technology, gas turbine efficiency increases with the turbine inlet temperature (TIT): both modern aeronautical and land-based gas turbines operate at very high temperatures (1500–2000K) –and correspondingly high pressure ratios. As the TIT increases, the heat transferred from the expanding gas to the turbine blade also increases, and the need to extend the operational life make it necessary to adopt internal air cooling to reduce blade creep, oxidation and low-cycle fatigue. The cooling medium is usually air extracted from the high-pressure compressor stages, and since this extraction decreases the thermal efficiency and power output of the engine, it is important to bleed the minimum amount of coolant to attain a prescribed maximum material temperature in the blade with the maximum possible uniformity (lower thermal stresses): thence the need to properly model the cooling system for a given turbine blade geometry under realistic engine operating conditions. In the preliminary design of the first statoric and rotoric blading, it is essential for designers to rely on simple models that often neglect the small scales effects on the external flows and also by force adopt a much simplified treatment of the internal ones, and as a result attain a substantially lower degree of approximation than that offered by more complex and expensive numerical simulations. The goal in the design of a lumped model is therefore to make it both sufficiently general and accurate to analyze blade shapes and cooling channels structures that can be further refined by means of more accurate, but also more computationally intensive, models.
Keywords: Gas turbine blade cooling; Gas turbine thermodynamics; Blade cooling effectiveness (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215001450
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:83:y:2015:i:c:p:104-114
DOI: 10.1016/j.energy.2015.01.107
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().