Assessing the economics of large Energy Storage Plants with an optimisation methodology
Giorgio Locatelli,
Emanuele Palerma and
Mauro Mancini
Energy, 2015, vol. 83, issue C, 15-28
Abstract:
Power plants, such as wind farms, that harvest renewable energy are increasing their share of the energy portfolio in several countries, including the United Kingdom. Their inability to match demand power profiles is stimulating an increasing need for large ESP (Energy Storage Plants), capable of balancing their instability and shifting power produced during low demand to peak periods. This paper presents and applies an innovative methodology to assess the economics of ESP utilising UK electricity price data, resulting in three key findings. Firstly the paper provides a methodology to assess the trade-off “reserve capacity vs. profitability” and the possibility of establishing the “optimum size capacity”. The optimal reserve size capacity maximizing the NPV (Net Present Value) is smaller than the optimum size capacity minimizing the subsidies. This is not an optimal result since it complicates the incentive scheme to align investors and policy makers' interests. Secondly, without subsidies, none of the existing ESP technologies are economically sustainable. However, subsidies are a relatively small percentage of the average price of electricity in UK. Thirdly, the possibility of operating ESP as both as a reserve and do price arbitrage was identified as a mean of decreasing subsidies for the ESP technologies.
Keywords: Energy storage; Energy system; Wind farms; Economics; CAES (Compressed Air Energy Storage); PHS (Pumped Hydroelectric Storage) (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (39)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215000742
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:83:y:2015:i:c:p:15-28
DOI: 10.1016/j.energy.2015.01.050
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().