EconPapers    
Economics at your fingertips  
 

Analysis of CO2 transmission in a micro direct methanol fuel cell

Zhenyu Yuan, Jie Yang, Zipeng Li, Yuge Sun, Ning Ye and Hongyuan Shen

Energy, 2015, vol. 83, issue C, 496-502

Abstract: In this paper, the behavior of CO2 transmission in a micro direct methanol fuel cell (μDMFC) is investigated through both simulations and experiments. A model is built to describe the change of CO2 volume fraction in the anode channel under different operation parameters (e.g., current density, flow rate and operation temperature). In addition, the dynamic movement of a single CO2 bubble is also simulated to study the CO2 characteristics. Furthermore, a metal-based transparent μDMFC with the active area of 0.8 cm × 0.8 cm is designed and fabricated to evaluate the two-phase flow characteristic as well as the corresponding cell performance. Experimental results reveal that the operating current, the flow rate and the temperature can significantly influence the quantity and shape of CO2 bubbles: 1) small discrete bubbles can grow up to a gas column with the increase of operating current; 2) the amount and the size of CO2 bubbles will decrease with the increase of the flow rate; 3) higher operating temperature will prompt the size of CO2 bubbles. The experimental results are well in agreement with the simulation.

Keywords: Micro direct methanol fuel cell; Two-phase flow; Gas characteristics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421500208X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:83:y:2015:i:c:p:496-502

DOI: 10.1016/j.energy.2015.02.053

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:83:y:2015:i:c:p:496-502