Optimal structural design of residential cogeneration systems with battery based on improved solution method for mixed-integer linear programming
Tetsuya Wakui and
Ryohei Yokoyama
Energy, 2015, vol. 84, issue C, 106-120
Abstract:
An optimal structural design model of residential cogeneration systems with a battery is developed using an MILP (mixed-integer linear programming) approach. A battery is introduced as a device candidate to increase operational flexibility of cogeneration units without electric power export. In this model, the selection from device candidates and multi-period operation of selected devices, in which various operational restrictions are considered, are simultaneously optimized so as to minimize annual primary energy consumption. For a battery, not only charging and discharging losses and an upper limit of charging and discharging electric power but also charging–discharging status and electric power consumption in a built-in bidirectional inverter are uniquely incorporated into the model. In addition, the solution method for this MILP problem is improved using a simple decomposition approach. The developed model is then applied to the structural design of a residential cogeneration system with a battery for simulated energy demands in Japan. The results reveal the effectiveness of the simple decomposition approach and the increase in the energy-saving effect of the residential cogeneration system by the introduction of the battery, as a consequence of the increase in the electric capacity factor of the cogeneration unit by the charge of surplus electric power. Moreover, it is shown that this increase strongly depends on the battery performances.
Keywords: Cogeneration; Battery; Structural design; Operational planning; Optimization; Mixed-integer linear programming (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421500211X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:84:y:2015:i:c:p:106-120
DOI: 10.1016/j.energy.2015.02.056
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().