EconPapers    
Economics at your fingertips  
 

Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids

Hafiz Muhammad Ali, Hassan Ali, Hassan Liaquat, Hafiz Talha Bin Maqsood and Malik Ahmed Nadir

Energy, 2015, vol. 84, issue C, 317-324

Abstract: New experimental data are reported for water based nanofluids to enhance the heat transfer performance of a car radiator. ZnO nanoparticles have been added into base fluid in different volumetric concentrations (0.01%, 0.08%, 0.2% and 0.3%). The effect of these volumetric concentrations on the heat transfer performance for car radiator is determined experimentally. Fluid flow rate has been varied in a range of 7–11LPM (liter per minute) (corresponding Reynolds number range was 17,500–27,600). Nanofluids showed heat transfer enhancement compared to the base fluid for all concentrations tested. The best heat transfer enhancement up to 46% was found compared to base fluid at 0.2% volumetric concentration. A further increase in volumetric concentration to 0.3% has shown a decrease in heat transfer enhancement compared to 0.2% volumetric concentration. Fluid inlet temperature was kept in a range of 45–55 °C. An increase in fluid inlet temperature from 45 °C to 55 °C showed increase in heat transfer rate up to 4%.

Keywords: Nanofluids; Nanoparticles; ZnO/water; Heat transfer enhancement; Heat exchanger (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215002807
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:84:y:2015:i:c:p:317-324

DOI: 10.1016/j.energy.2015.02.103

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:84:y:2015:i:c:p:317-324