EconPapers    
Economics at your fingertips  
 

Scalable tuning of building models to hourly data

Aaron Garrett and Joshua New

Energy, 2015, vol. 84, issue C, 493-502

Abstract: Energy models of existing buildings are unreliable unless calibrated so that they correlate well with actual energy usage. Manual tuning requires a skilled professional and is prohibitively expensive for small projects, imperfect, non-repeatable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and sensors are making available. A scalable, automated methodology is needed to quickly, intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The “Autotune” project is a novel, model-agnostic methodology that leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Accuracy metrics are provided that quantify model error to measured data for either monthly or hourly electrical usage from a highly instrumented, emulated-occupancy research home.

Keywords: Autotune; EnergyPlus; Calibration; Optimization; Evolutionary computation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215003084
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:84:y:2015:i:c:p:493-502

DOI: 10.1016/j.energy.2015.03.014

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:84:y:2015:i:c:p:493-502