Hydrogen production from supercritical water reforming of glycerol over Ni/Al2O3–SiO2 catalyst
F.J. Gutiérrez Ortiz,
F.J. Campanario,
P.G. Aguilera and
P. Ollero
Energy, 2015, vol. 84, issue C, 634-642
Abstract:
Hydrogen production from the supercritical water reforming of glycerol was studied in a tubular fixed-bed reactor by using a Ni-based catalyst supported on Al2O3 and SiO2. Tests were carried out at a pressure of 240 bar, temperatures of 500–800 °C, glycerol feed concentrations of 5–30 wt.%, and weight hourly space velocity from 1.25 to 22.5 gGly h−1 gCat−1 (residence time from 1.6 to 4.8 s through the bed). The dry gas is mainly composed of H2, CO2, CO, CH4. The results showed that the glycerol conversion was almost complete, except at the highest glycerol feed concentration and lowest temperature. Hydrogen yields were very close to those values predicted by equilibrium at a short residence time. Nickel on catalyst was completely reduced, and structured carbon nanotubes were encountered at glycerol concentrations higher than 20 wt.%. This study illustrates that the reforming of glycerol using supercritical water over a Ni catalyst makes it possible to reduce the reforming temperature needed when no catalyst is used (from 800 °C to 600 °C), achieving a high-yield hydrogen production, very close to equilibrium, and requiring less energy.
Keywords: Reforming; Supercritical water; Glycerol; Hydrogen; Catalyst; Nickel (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215003400
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:84:y:2015:i:c:p:634-642
DOI: 10.1016/j.energy.2015.03.046
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().