A collaborative operation decision model for distributed building clusters
Rui Dai,
Mengqi Hu,
Dong Yang and
Yang Chen
Energy, 2015, vol. 84, issue C, 759-773
Abstract:
In the context of smart grid, the building can freely connect with other buildings to form clusters which are termed as building clusters to share energy. However, less study is conducted to develop optimal operation strategy for building clusters and evaluate the performance of building clusters in terms of different measures under different operation modes. Therefore, this research proposes a collaborative decision model to study the energy exchange among building clusters where the buildings share a combined cooling, heating and power system, thermal storage, and battery, and each building aims to minimize its energy cost, carbon emission or primary energy consumption. A collaborative decision framework is proposed to obtain Pareto operation decisions for the building clusters. We compare the performance of the collaborative strategy with the non-cooperative strategy where no energy sharing among the buildings. It is demonstrated that the collaborative strategy can significantly reduce energy cost, carbon emission and primary energy consumption under both grid connected and disconnected operation modes. The collaborative strategy under dynamic pricing plan is more cost effective than the strategy under flat pricing plan, which indicates that the collaborative strategy can motive buildings to more efficiently utilize the shared energy under dynamic pricing plan.
Keywords: Smart buildings; Collaborative decision; Multi-objective optimization; Pareto optimality; Combined cooling heating and power system (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215003369
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:84:y:2015:i:c:p:759-773
DOI: 10.1016/j.energy.2015.03.042
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().