EconPapers    
Economics at your fingertips  
 

3-D numerical simulation for co-firing of torrefied biomass in a pulverized-fired 1 MWth combustion chamber

Alexander Stroh, Falah Alobaid, Jan-Peter Busch, Jochen Ströhle and Bernd Epple

Energy, 2015, vol. 85, issue C, 105-116

Abstract: Torrefaction process is a promising technology for changing the chemical and physical properties of biomass so, that it can be used in existing pulverized fuel firing systems. A numerical 3-D simulation to study the combustion behaviour of torrefied biomass in a pulverized-fired furnace has been carried out. In the model different reaction kinetics for devolatilization and char oxidation of three biomass components, namely hemicellulose, cellulose and lignin, have been applied. The reaction kinetic parameters for pyrolysis and char oxidation were determined by experimental work using thermogravimetric analysis (TGA). In numerical studies three different fuel blends were examined, which include pure coal, ∼9% and ∼17% (thermal basis) torrefied sawdust in coal. Gas concentrations, temperature distribution, pyrolysis and char reactions were analyzed along the 1 MWth combustion chamber. The numerical investigation suggests that the torrefied biomass can be used as a substitute fuel for coal without modifications in the co-firing system. However, the case-study with the highest biomass substitute leads to an incomplete decomposition of the lignin component, due to coarser biomass particles and decreased char reaction rates.

Keywords: CFD (computational fluid dynamics); Co-firing; Pulverized fuel-firing systems; Torrefied biomass; Reaction kinetics of biomass (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215003874
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:85:y:2015:i:c:p:105-116

DOI: 10.1016/j.energy.2015.03.078

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:85:y:2015:i:c:p:105-116