Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries
Qun Li,
Longwei Yin,
Jingyun Ma,
Zhaoqiang Li,
Zhiwei Zhang,
Ailian Chen and
Caixia Li
Energy, 2015, vol. 85, issue C, 159-166
Abstract:
In-situ magnesiothermic reduction reaction route was developed to synthesize mesoporous Si/C (silicon/carbon) hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for LIBs (lithium ion batteries). The effect of carbon incorporation on the microstructures and electrochemical performance of the Si/C hybrid LIBs anodes is investigated. The incorporation of carbon in the Si/C hybrids not only prevents the ordered structure of mesoporous silicon from collapsing, but also increases the electrical conductivity of the synthesized Si/C hybrids. The as-prepared Si/C hybrid LIBs anode with an optimal carbon content of 7.05 wt%, displays improved electrochemical performance with a high reversible specific capacity, rate capability and excellent cyclic performance, showing a higher specific capacity of up to 1452 mAh g−1 at a current density of 200 mA g−1 after 100 cycles and a high coulombic efficiency of up to 99.2%. The great improvement of the electrochemical performance of the ordered mesoporous Si/C hybrid LIBs anodes can be attributed to the unique ordered structure, large surface area, the homogeneously incorporated carbon in the Si/C hybrids. The synthesized ordered mesoporous Si/C hybrids are promising for potential applications as LIB anode materials with enhanced electrochemical performance.
Keywords: Mesoporous silicon; Hybrid; Anode material; Lithium ion battery (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215003990
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:85:y:2015:i:c:p:159-166
DOI: 10.1016/j.energy.2015.03.090
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().