A thermodynamic assessment of therapeutic hypothermia techniques
Carlos Eduardo Keutenedjian Mady,
Izabela Batista Henriques and
Silvio de Oliveira
Energy, 2015, vol. 85, issue C, 392-402
Abstract:
According to literature, therapeutic hypothermia has been applied for treating conditions that causes an interruption in the delivery of oxygen to the brain, giving the patient better chances of survival with a neurological recovery and without any irreversible damage to the brain. Hypothermia is also used during surgeries and circulatory arrest. In this article, the objective temperature of hypothermia is 32 °C, which is considered mild: 32–35 °C. Three techniques of hypothermia induction were considered: external blood cooling, endovascular cooling with a catheter insertion and water bath. Energy and exergy analyses were performed to determine the clinical effectiveness of these techniques and to evaluate the best test parameters, from which it was possible to calculate the body internal temperature, destroyed exergy and exergy efficiency. Moreover, it was proposed an exergy performance index, which takes into account the ability of a given technique to change the exergy of the body. Results indicate that therapeutic hypothermia takes the subject to a state of lower destroyed exergy and higher body exergy efficiency. The exergy performance index shows that lower rates of cooling lead to a better transformation of the exergy removed from the body into variation of the body exergy.
Keywords: Exergy analysis; Exergy efficiency; Human thermal model; Hypothermia (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215004053
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:85:y:2015:i:c:p:392-402
DOI: 10.1016/j.energy.2015.03.096
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().