Greenhouse gas abatement costs of hydrogen production from underground coal gasification
Aman Verma,
Babatunde Olateju and
Amit Kumar
Energy, 2015, vol. 85, issue C, 556-568
Abstract:
The demand for hydrogen is likely to increase in the next decade to satisfy the projected growth of the bitumen upgrading industry in western Canada. This paper presents GHG (greenhouse gas) abatement costs and the GHG abatement potential in producing hydrogen from UCG (underground coal gasification) along with CCS (carbon capture and sequestration). Seven hydrogen production scenarios are considered to assess the competitiveness of implementing UCG compared to SMR (steam methane reforming). The analysis is completed through a LCA (life cycle assessment) of large-scale hydrogen production from UCG and SMR with and without CCS. Considering SMR technology without CCS as the base case, the GHG abatement costs of implementing the UCG-CCS technology is calculated to be in the range of 41–109 $CAD/tonne-CO2-eq depending on the transportation distance to the CCS site from the UCG-H2 production plant. Life cycle GHG emissions are higher in UCG than in SMR. The GHG abatement costs for SMR-CCS-based scenarios are higher than for UCG-CCS-based scenarios; they range from 87 to 158 $CAD/tonne-CO2-eq in a similar manner to UCG-CCS. Consideration of revenues for selling the CO2 captured for EOR (enhanced oil recovery) reduces the GHG abatement costs. An opportunity for revenue generation is realized in the UCG-CCS case.
Keywords: CCS (Carbon capture and sequestration); UCG (Underground coal gasification); Hydrogen (H2) production; GHG abatement costs; Life cycle GHG emissions (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215003795
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:85:y:2015:i:c:p:556-568
DOI: 10.1016/j.energy.2015.03.070
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().