Evaluating the effect of tire parameters on required drawbar pull energy model using adaptive neuro-fuzzy inference system
Hamid Taghavifar and
Aref Mardani
Energy, 2015, vol. 85, issue C, 586-593
Abstract:
Determination of the required energy for drawbar pull of agricultural tractors plays a significant role in the characterization of the quality of tractors during different operations. Assessment of the effect of some tire parameters on drawbar pull energy was performed utilizing a single-wheel tester in a soil bin facility. To this aim, the potential of a global searching soft computing approach (i.e. adaptive neuro-fuzzy inference system) with various membership functions was evaluated. The tire parameters of velocity at three levels of 0.8, 1 and 1.2 m/s, wheel load at three levels of 2, 3 and 4 kN and slippage at three levels of 8, 12 and 15% were applied to single-wheel tester while four installed load cells were responsible for the measurement of drawbar pull. It was concluded that drawbar pull energy is a direct function of wheel load, velocity and slippage. Hence, the greatest value of 1.056 kJ corresponded to the wheel load of kN, slippage of 15% and velocity of 1.2 m/s. The outperforming model yielded mean square error and coefficient of determination values of 0.00236 and 0.995, respectively.
Keywords: Artificial intelligence; ANFIS; Energy; Drawbar pull; Soil bin (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215003813
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:85:y:2015:i:c:p:586-593
DOI: 10.1016/j.energy.2015.03.072
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().