Thermal performance characteristics of an absorber plate fin having temperature dependent thermal conductivity and overall loss coefficient
G. Jilani and
Ciby Thomas
Energy, 2015, vol. 86, issue C, 1-8
Abstract:
The prime objective of the present numerical study is to analyze the thermal performance characteristics of an absorber plate fin of a sheet and tube type solar flat plate collector of fixed collector area. Considering temperature dependent thermal conductivity and overall loss coefficient and assuming cubic temperature profile along the tube, pseudo-transient form of two-dimensional, highly nonlinear partial differential equation governing the steady state temperature distribution in the absorber plate fin is solved using Alternating Direction Implicit finite difference scheme. Keeping ambient temperature, fluid inlet temperature and number of tubes fixed, numerical results are presented and discussed for wide range of values of aspect ratio of the absorber plate, fluid outlet temperature, overall loss parameter and solar flux. Finally, it is found that there exists an upper limiting value of solar flux beyond which increase in heat transfer rate is insignificant. Further, it is concluded that fin efficiency remains independent of aspect ratio of absorber plate whereas it increases significantly with decrease in overall loss parameter and decreases slightly with increase in fluid outlet temperature.
Keywords: Absorber plate fin; Variable thermal conductivity; Cubic temperature profile; Finite difference scheme; Thermal performance (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215002595
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:86:y:2015:i:c:p:1-8
DOI: 10.1016/j.energy.2015.02.096
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().