High performance ocean energy harvesting turbine design–A new casing treatment scheme
Paresh Halder,
Abdus Samad,
Jin-Hyuk Kim and
Young-Seok Choi
Energy, 2015, vol. 86, issue C, 219-231
Abstract:
Delaying a stall improves the performance of any turbomachinery system. TC (tip clearance), which is used in a bi-directional flow Wells turbine of an ocean wave energy device, changes the flow pattern on the turbine blade suction surface, while changing or modifying the TC zone can help obtaining a delayed stall. In the present work, a new tip grooving scheme is introduced and the performance is compared for different tip groove depths and TCs of a Wells turbine. The performance is defined in terms of wider operating range or stall delay, power production and efficiency. The problem was solved by a numerical analysis technique. A multi-block meshing scheme was employed to generate structured and hexahedral elements in the computational domain and the flow was solved in ANSYS CFX® v14.5 by solving Reynolds-averaged Navier Stokes equations. It was found that the grooves improve the turbine operating range and power production as compared to those of the turbine without a groove. The groove depth of 3% of the chord length produced highest power and widest operating range. Using the circumferential groove, 26% increase in turbine power output for a particular operating point is achieved.
Keywords: Tip gap; Wells turbine; Wave energy; Stall delay; Casing groove (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215004831
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:86:y:2015:i:c:p:219-231
DOI: 10.1016/j.energy.2015.03.131
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().