EconPapers    
Economics at your fingertips  
 

Predicting the wind power density based upon extreme learning machine

Kasra Mohammadi, Shahaboddin Shamshirband (), Por Lip Yee, Dalibor Petković, Mazdak Zamani and Sudheer Ch

Energy, 2015, vol. 86, issue C, 232-239

Abstract: Precise predictions of wind power density play a substantial role in determining the viability of wind energy harnessing. In fact, reliable prediction is particularly useful for operators and investors to offer a secure situation with minimal economic risks. In this paper, a new model based upon ELM (extreme learning machine) is presented to estimate the wind power density. Generally, the two-parameter Weibull function has been normally used and recognized as a reliable method in wind energy estimations for most windy regions. Thus, the required data for training and testing were extracted from two accurate Weibull methods of standard deviation and power density. The validity of the ELM model is verified by comparing its predictions with SVM (Support Vector Machine), ANN (Artificial Neural Network) and GP (Genetic Programming) techniques. The wind powers predicted by all approaches are compared with those calculated using measured data. Based upon simulation results, it is demonstrated that ELM can be utilized effectively in applications of wind power predictions. In a nutshell, the survey results show that the proposed ELM model is suitable and precise to predict wind power density and has much higher performance than the other approaches examined in this study.

Keywords: Wind power density; ELM (extreme learning machine); Weibull method; Prediction (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215004600
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:86:y:2015:i:c:p:232-239

DOI: 10.1016/j.energy.2015.03.111

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:energy:v:86:y:2015:i:c:p:232-239