Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode
V. Chintala and
K.A. Subramanian
Energy, 2015, vol. 87, issue C, 448-462
Abstract:
The study deals the effect of different compression ratios on maximum hydrogen energy share, thermal efficiency, and emissions in a 7.4 kW direct injection CI (compression ignition) engine under dual-fuel mode. Experimental tests were conducted on the engine with three different compression ratios (19.5:1 base (CR1), 16.5:1 (CR2), and 15.4:1 (CR3)) using hydrogen as main fuel and diesel as pilot fuel at 100% load and constant speed of 1500 rpm. Knock limited maximum hydrogen energy share enhanced significantly from 19% with CR1 to 59% and 63% with CR2 and CR3. The percentage reductions of NOx emission in the engine with CR2 and CR3 are about 43% and 48% respectively. HC (Hydrocarbon) and CO (carbon monoxide) emissions reached to zero level with the hydrogen addition at all compression ratios. The optimum compression ratio is 16.5:1 in view of higher thermal efficiency and lower emissions (HC, CO, smoke, and NOx). A notable conclusion emerged from the study is that the reduction in compression ratio of the engine is a promising option for the improvement in hydrogen energy share and thermal efficiency along with benefits of lower emissions.
Keywords: Hydrogen; Dual-fuel mode; Energy share increase; Compression ratio; Knock intensity (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421500568X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:87:y:2015:i:c:p:448-462
DOI: 10.1016/j.energy.2015.05.014
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().