EconPapers    
Economics at your fingertips  
 

Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler

Mohammad Saghafifar and Mohamed Gadalla

Energy, 2015, vol. 87, issue C, 663-677

Abstract: Gas turbine thermal efficiency has significant dependency on climatic conditions. Evaporative cooling is commonly utilized as an inlet air cooling technique in hot and dry climates though an increase in atmospheric humidity will considerably diminish its performance. Implementing desiccants to dehumidify air will enhance evaporative inlet cooling effectiveness. Furthermore, a recently commercialized cooler named Maisotsenko cooler can be integrated in gas turbine inlet air cooling to replace conventional evaporative coolers. In this paper, four different inlet air cooling systems employing turbine waste heat are proposed for gas turbine power augmentation in hot and humid climates such as UAE. Detailed sensitivity analysis is performed to investigate the impact of ambient air conditions and regeneration temperature on the inlet air cooling systems' effectiveness. Recommended inlet air cooling techniques are evaluated against more commonly used inlet air cooling systems under UAE climatic conditions. Finally, economic and transient analysis are accomplished to signify the most economical inlet air cooling system that is most suitable for UAE gas turbine power augmentation. Maisotsenko evaporative desiccant inlet air cooling with life savings of 31.882 MUS$ is the most economically justified inlet cooling technique for a 50 MWe gas turbine power plant in UAE with life span of 25 years.

Keywords: Gas turbine inlet cooling; Maisotsenko cooler; Desiccant cooling; Economic analysis (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215006167
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:87:y:2015:i:c:p:663-677

DOI: 10.1016/j.energy.2015.05.035

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:87:y:2015:i:c:p:663-677