EconPapers    
Economics at your fingertips  
 

A study of influence on nanocomposite membrane of sulfonated TiO2 and sulfonated polystyrene-ethylene-butylene-polystyrene for microbial fuel cell application

Sivasankaran Ayyaru and Sangeetha Dharmalingam

Energy, 2015, vol. 88, issue C, 202-208

Abstract: Microbial fuel cell (MFC) is a device that uses bacteria as a catalyst to oxidize various substrates for simultaneous electricity generation and wastewater treatment. In the present work, (sulfonated TiO2 (S-TiO2)/polystyrene ethylene butylene polystyrene) SPSEBS nanocomposite membranes were prepared by solution casting. The IEC (ion exchange capacity), water uptake, proton conductivity and MFC performance of the composite membranes were explored. SPSEBS-S-TiO2 membrane (7.5%) exhibited the highest IEC value, water uptake and proton conductivity capacity. The results revealed that the incorporation of sulfonated TiO2 improved the proton conductivity of the SPSEBS membrane effectively and exhibited the highest peak power density of 1345 ± 17 mWm−2 for SPSEBS-S-TiO2 7.5%, when compared to 695 ± 7 mWm−2 and 835 ± 8 mWm−2 obtained for SPSEBS and SPSEBS-TiO2 membranes respectively in a (single chambered microbial fuel cell) SCMFC. In comparison to previously reported work with Nafion (300 ± 10 mWm−2) in MFCs, the composite membrane delivered more than 4-fold higher power density. The oxygen mass transfer coefficient (KO) of nanocomposite membranes decreased with incorporation of the sulfonated TiO2 which in turn increased the (columbic efficiency) CE.

Keywords: Microbial fuel cell; Nanocomposites; Metal oxides; Proton conductivity; Sulfonated TiO2; Proton exchange membrane (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215005691
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:88:y:2015:i:c:p:202-208

DOI: 10.1016/j.energy.2015.05.015

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:88:y:2015:i:c:p:202-208