Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum
Joana Ortigueira,
Tiago Pinto,
Luísa Gouveia and
Patrícia Moura
Energy, 2015, vol. 88, issue C, 528-536
Abstract:
The biological hydrogen production from Spirogyra sp. biomass was studied in a SBR (sequential batch reactor) equipped with a biogas collecting and storage system. Two acid hydrolysis pre-treatments (1N and 2N H2SO4) were applied to the Spirogyra biomass and the subsequent fermentation by Clostridium butyricum DSM 10702 was compared. The 1N and 2N hydrolyzates contained 37.2 and 40.8 g/L of total sugars, respectively, and small amounts of furfural and HMF (hydroxymethylfurfural). These compounds did not inhibit the hydrogen production from crude Spirogyra hydrolyzates. The fermentation was scaled up to a batch operated bioreactor coupled with a collecting system that enabled the subsequent characterization and storage of the biogas produced. The cumulative hydrogen production was similar for both 1N and 2N hydrolyzate, but the hydrogen production rates were 438 and 288 mL/L.h, respectively, suggesting that the 1N hydrolyzate was more suitable for sequential batch fermentation. The SBR with 1N hydrolyzate was operated continuously for 13.5 h in three consecutive batches and the overall hydrogen production rate and yield reached 324 mL/L.h and 2.59 mol/mol, respectively. This corresponds to a potential daily production of 10.4 L H2/L Spirogyra hydrolyzate, demonstrating the excellent capability of C. butyricum to produce hydrogen from microalgal biomass.
Keywords: Biohydrogen; Clostridium butyricum; Microalgal biomass; Sequential batch reactor; Biohydrogen storage (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215006519
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:88:y:2015:i:c:p:528-536
DOI: 10.1016/j.energy.2015.05.070
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().